RIK - Repository of the Maize Research Institute "Zemun Polje"
Maize Research Institute "Zemun Polje", Belgrade, Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIK
  • MRIZP
  • Радови истраживача / Researchers' publications
  • View Item
  •   RIK
  • MRIZP
  • Радови истраживача / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

Thumbnail
2016
616.pdf (400.8Kb)
Authors
Hadži-Tašković-Šukalović, Vesna
Vučinić, Željko
Vuletić, Mirjana
Marković, Ksenija
Kravić, Natalija
Article (Published version)
Metadata
Show full item record
Abstract
Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roo...ts. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

Keywords:
nitrate / ammonia / antioxidant enzymes / phenolic compounds
Source:
Spanish Journal of Agricultural Research, 2016, 14, 4
Publisher:
  • Spanish Natl Inst Agricultural & Food Research & Technolo, Madrid
Funding / projects:
  • The membranes as sites of interaction between the intracellular and apoplastic environments: studies of the bioenergetics and signaling using biophysical and biochemical techniques. (RS-173040)

DOI: 10.5424/sjar/2016144-8305

ISSN: 1695-971X

WoS: 000389677200002

Scopus: 2-s2.0-85005995778
[ Google Scholar ]
3
2
URI
http://rik.mrizp.rs/handle/123456789/618
Collections
  • Радови истраживача / Researchers' publications
Institution/Community
MRIZP
TY  - JOUR
AU  - Hadži-Tašković-Šukalović, Vesna
AU  - Vučinić, Željko
AU  - Vuletić, Mirjana
AU  - Marković, Ksenija
AU  - Kravić, Natalija
PY  - 2016
UR  - http://rik.mrizp.rs/handle/123456789/618
AB  - Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.
PB  - Spanish Natl Inst Agricultural & Food Research & Technolo, Madrid
T2  - Spanish Journal of Agricultural Research
T1  - Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources
VL  - 14
IS  - 4
DO  - 10.5424/sjar/2016144-8305
UR  - conv_943
ER  - 
@article{
author = "Hadži-Tašković-Šukalović, Vesna and Vučinić, Željko and Vuletić, Mirjana and Marković, Ksenija and Kravić, Natalija",
year = "2016",
abstract = "Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.",
publisher = "Spanish Natl Inst Agricultural & Food Research & Technolo, Madrid",
journal = "Spanish Journal of Agricultural Research",
title = "Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources",
volume = "14",
number = "4",
doi = "10.5424/sjar/2016144-8305",
url = "conv_943"
}
Hadži-Tašković-Šukalović, V., Vučinić, Ž., Vuletić, M., Marković, K.,& Kravić, N.. (2016). Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources. in Spanish Journal of Agricultural Research
Spanish Natl Inst Agricultural & Food Research & Technolo, Madrid., 14(4).
https://doi.org/10.5424/sjar/2016144-8305
conv_943
Hadži-Tašković-Šukalović V, Vučinić Ž, Vuletić M, Marković K, Kravić N. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources. in Spanish Journal of Agricultural Research. 2016;14(4).
doi:10.5424/sjar/2016144-8305
conv_943 .
Hadži-Tašković-Šukalović, Vesna, Vučinić, Željko, Vuletić, Mirjana, Marković, Ksenija, Kravić, Natalija, "Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources" in Spanish Journal of Agricultural Research, 14, no. 4 (2016),
https://doi.org/10.5424/sjar/2016144-8305 .,
conv_943 .

DSpace software copyright © 2002-2015  DuraSpace
About RIK - Repository of the Maize Research Institute Zemun Polje | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIK - Repository of the Maize Research Institute Zemun Polje | Send Feedback

OpenAIRERCUB