

International Conference

The Frontiers of Science and Technology in Crop Breeding and Production Conference

8 – 9 June, 2021 Belgrade, Serbia

ORGANIZING COMMITTEE

Dr. Vesna Kandić President

Dr. Aleksandar Popović Dr. Ana Obradović Anika Kovinić, MSc Dr. Danijela Ristić Iva Savić, MSc Dr. Jelena Vukadinović Dr. Jovan Pavlov Manja Božić, MSc Dr. Marija Kostadinović Dr. Marija Milivojević Dr. Marijana Simić Marko Mladenović, MSc Dr. Milan Brankov Dr. Milan Stevanović Dr. Mile Sečanski Milena Šenk. MSc Dr. Milica Nikolić Miloš Crevar, MSc Dr. Natalija Kravić Dr. Nikola Grčić Olivera Đorđević Melnik, MSc Dr. Snežana Gošić Dondo Dr. Sofija Božinović Dr. Tanja Petrović Dr. Valentina Nikolić Dr. Vesna Perić Dr. Vojka Babić Dr. Zoran Dumanović

03 - 04 Poster

SEVERAL GENES INVOLVED IN LOW TEMPERATURE RESPONSE IN MAIZE FOLLOW DIFFERENT EXPRESSION PATTERNS AT DIFFERENT DEVELOPMENTAL STAGES

Manja Božić^{1*}, Bojana Banović Đeri², Dragana Dudić³, Dragana Ignjatović-Micić¹, Jelena Vančetović¹, Nenad Delić¹, Ana Nikolić¹

¹ Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
² Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
³ Faculty of Informatics, University Union-Nikola Tesla, Belgrade, Serbia

*Corresponding author e-mail address: mbozic@mrizp.rs

Earlier sowing is one of the most important strategies of ensuring good yield potential and crop quality under poor environmental conditions arising as consequences of climate changes. Sowing maize in early spring, when the temperatures are lower, enables avoidance of drought and high summer temperatures during the flowering and grain filling stages, but it also means that maize plants will be exposed to suboptimal temperatures during earlier developmental stages. Consequently, development of maize lines tolerant to low temperatures during those stages becomes precedence. An initial study encompassed whole transcriptome sequencing of 46 maize inbred lines at the V4 stage grown under optimal temperature conditions. Gene expression analysis of maize genotypes grouped as Lancaster and non-Lancaster (BSSS, Iowa dent, etc.) revealed a set of 77 differentially expressed genes (DEGs). Seven of these genes, related to abiotic stress response, were further characterized under low temperature conditions in eight inbred lines at the V4 stage. Their expression showed specific profiles depending on the duration of low temperature exposure and genetic background. To test if these genes follow the same expression patterns at earlier developmental stages, the experiment was performed with 5-day old maize seedlings of two inbred lines (tolerant and sensitive), under optimal (25°/20°C) and low (8°/10°C) temperature conditions, with a 12h photoperiod. Samples for RNA extraction, cDNA synthesis and qPCR expression analysis were taken after 6h and 24h exposure to experimental temperatures. Five analyzed genes showed different expression regulation dependent on cold exposure duration. Two genes showed regulation dependent both on cold exposure duration and genetic background. Additionally, three of five DEGs showed different expression patterns at 5-day old seedling stage than at the V4 stage. The results imply that processes underlying maize low temperature response are

L	
Laurence Moreau 9	Lijuan Qiu 24
Lee Hickey 22	Liming Zhou 17
Leopold Rittler 24	Lonesome Malambo 19
LJ	
Ljiljana Brbaklić 40	Ljubiša Kolarić 72
Ljubica Šarčević-Todosijević 72	Ljubiša Živanović 72
М	
M Carlota Vaz Patto 10	Milan Stevanović 32
Manja Božić 50, 54	Mile Sečanski 85
Margarita Dodevska 65, 78	Milena Šenk 61, 62, 64, 79
Maria Georgakli 67	Milena Simić 61, 62, 64, 65, 79
Marija Kostadinović 75, 77	Milica Blažić 43
Marija Milivojević 34, 82	Milica Nikolić 51
Marijana Simić 34, 74, 76, 78	Milica Radosavljević 74
Marijenka Tabaković 61, 62, 64	Milorad Rošulj 23
Marko Mladenović 47	Miloš Avramov 52
Marko Vasić 74, 76	Miloš Prokopijević 84
Martin Pachner 24	Milosav Babić 35, 36
Mehmet Pamukcu 39, 56	Milovan Stoiljković 62
Mercy Fakude 17	Miodrag Tolimir 61
Milan Brankov 61, 62, 64, 79	Mirjana Srebrić 33, 77
Milan Mirosavljević 37, 40, 45	
Ν	
Natalija Kravić 30, 31, 34, 35, 36, 77, 85	Niki-Maria Antoniou 67
Nataša Buha 37	Nikola Grčić 30, 32, 44, 46, 47