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Abstract 16 

Intensive weed management is required to meet the growing demands of sweet maize 17 

production. Herbicide application is inevitable in sweet maize production, while foliar 18 

fertilizer is commonly used in cropping in order to improve crop yield and quality. The effect 19 

of nicosulfuron and mesotrione, with and without foliar fertilizer, on the content of 20 

phytochemicals (i.e. carotenoids, tocopherols and free phenolic acids) in the kernels of three 21 

sweet maize hybrids was evaluated. Herbicides applied alone mainly improved the nutritive 22 

profile of the sweet maize kernel. The application of herbicides in combination with foliar 23 

fertilizer showed a high variability in the concentration of carotenoids, tocopherols and free 24 

phenolic acids. The significant change in the content of phytochemicals was induced by the 25 

applied treatments, but it is also genotype-dependent, which was also confirmed by the 26 

Principal Component Analysis. 27 

Keywords: Phenolic acids; Tocopherols; Nicosulfuron; Foliar fertilizer.   28 
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1. Introduction 29 

When consumed as a vegetable, sweet maize is mostly available as a frozen or 30 

preserved (canned) product due to the rapid conversion of water-soluble sugar into starch 31 

(Szymanek et al., 2006). In the past ten years, the total amount of exported frozen and 32 

preserved sweet maize products has increased by approximately 49% and 33%, respectively 33 

(FAOSTAT, 2016). This indicates that there is a demand for increased production worldwide. 34 

The application of herbicides in sweet maize crop is required in order to provide effective 35 

weed control. However, sweet maize is more sensitive to various stresses, including 36 

herbicides, than standard starchy maize, while it is considered to be a poor competitor to 37 

weeds, which is a limiting factor in the process of herbicide selection (O’Sullivan et al., 38 

2000). Mesotrione, a member of the triketone group of herbicides, acts as an inhibitor of p-39 

hydroxyphenylpyruvate dioxygenase (HPPD). HPPD catalyzes the bioconversion of tyrosine 40 

to plastoquinone and α-tocopherol (Mitchell et al., 2001). In sensitive plants, due to a decrease 41 

in the biosynthesis of carotenoids, bleaching of pigments can be noticed as a consequence of 42 

the HPPD inhibition. Nicosulfuron, a member of the sulfonylurea group of herbicides, inhibits 43 

acetolactate synthase (ALS), the key enzyme in the biosynthesis of the essential branched-44 

chain amino acids: leucine, valine, and isoleucine (Schuster et al., 2007), thus affecting 45 

protein synthesis in plants. Both herbicides are registered for weed control in sweet maize 46 

and, when used at the recommended rate, they are rapidly metabolized to herbicidally inactive 47 

metabolites (O’Sullivan et al., 2000; Schuster et al., 2007; Kopsell et al., 2009). The first two 48 

decades of the twenty-first century were characterized by an increasing trend in the 49 

application of foliar fertilizer used as a supplement to soil fertilization in order to improve the 50 

crop yield and quality. Foliar fertilization provides crops with equally distributed and easily 51 

absorbable essential nutrients (micro- and macro-elements, amino acids, etc.) during plant 52 

development (Fageria et al., 2009; Silva Messias et al., 2013). 53 

Sweet maize is an excellent source of health promoting phytochemicals such as 54 

carotenoids, tocopherols and phenolic acids (Ibrahim and Juvik, 2009; Das and Singh, 2016). 55 

Lutein and zeaxanthin protect ocular tissue against phototoxic damage by absorbing harmful 56 

high-energy blue light and prevent age-related macular degeneration (AMD) (Basu et al., 57 

2001). The primary biological role of β-carotene is to enable provitamin A activity, but it can 58 

also act as a quencher of lipid radicals or singlet oxygen species (Grune et al., 2010). 59 

Tocopherols, the most powerful lipid-soluble antioxidants, protect the biological cell 60 
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membranes by trapping peroxyl radicals and nitrogen oxide (Bramley et al., 2000). Phenolic 61 

acids are plant secondary metabolites which promote human health by quenching free 62 

radicals, scavenging singlet oxygen species, chelating metal ions or reacting with lipid 63 

alkoxyl radical (Das and Singh, 2016). Due to the benefits to human health, an attempt to 64 

obtain food of high nutritional quality has become a worldwide trend. The increase in the 65 

nutritional quality of sweet maize through herbicide application has been reported in only two 66 

papers (Kopsell et al., 2009; Cutulle et al., 2018).  67 

The influence of herbicides and foliar fertilizers on the concentration of nutrients, of 68 

tocopherols and phenolic acids in particular, in sweet maize has not been published. These 69 

data are particularly important due to the continuous increase in the consumption of sweet 70 

maize worldwide. Therefore, the objective of this study was to assess the effects of herbicides 71 

from different groups with and without foliar fertilizer on the concentration of phytochemicals 72 

(i.e. carotenoids, tocopherols and free phenolic acids) in three different sweet maize hybrids. 73 

Furthermore, the principal component analysis was employed in order to evaluate the 74 

connection between the applied treatments and phytochemicals. 75 

2. Material and methods 76 

2.1. Field trial and treatments 77 

In this research, three sweet maize hybrids ‒ ZP504su (commercially available), 78 

ZP355su and ZP553su were sown in the first half of April 2017 in an experimental field at the 79 

Maize Research Institute Zemun Polje (44˚52´N, 20˚19´E). In the autumn (the beginning of 80 

November 2016) 100 kg/ha of mineral fertilizer (NPK 15-15-15) had been applied. In the 81 

spring (the beginning of March 2017) 200 kg/ha of urea fertilizer (46% N) had been 82 

incorporated into soil. A randomized block design with three replications was used for this 83 

experiment. Each hybrid was sown in three rows which were 5 meters long. Five treatments 84 

were investigated: C ‒ control (without herbicide or foliar fertilizer (FF) application); M ‒ 85 

mesotrione (120 g ai/ha); N ‒ nicosulfuron (45 g ai/ha); M+FF ‒ mesotrione + foliar fertilizer; 86 

N+FF ‒ nicosulfuron + foliar fertilizer. Foliar fertilizer (FF) with the formulation: L amino 87 

acids ‒ 6.5% w/w; total nitrogen ‒ 3.0% w/w; total organic matter ‒ 30.0% w/w, and seaweed 88 

extract ‒ 4.0% w/w was applied at the recommended rate (1.5 L/ha). All treatments were 89 

applied at the 5-6 leaf stage by using a CO2 pressurized sprayer (D-203S, R&D Sprayers 90 

Bellspray, Inc.) to deliver 200 L of water per hectare using a TeeJet 8002VS flat-flan nozzle. 91 
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Maize ears were hand harvested 21 days after pollination (technological maturity for sweet 92 

maize) and transferred to the laboratory. After desilking and dehusking, the undamaged 93 

kernels were collected and stored at -21ºC until analysis. 94 

2.2. Chemical and HPLC analyses 95 

For the determination of the concentration of tocopherols, carotenoids and free 96 

phenolic acids, approximately 1 g, 1.2 g and 1g of fresh kernel, respectively, was used. The 97 

extraction of tocopherols (α-T, β+γ-T and δ-T) was accomplished by using 10 mL of 2-98 

propanol (Gliszczyńska-Swigło and Sikorska, 2004). The extraction of carotenoids (lutein + 99 

zeaxanthin (L+Z) and β-carotene) was performed by adding (2 × 6 mL) the mixture of 100 

methanol and ethyl acetate (6:4, v/v), (Rivera and Canela, 2012). The extraction of free 101 

phenolic acids (protocatechuic (PA), caffeic (CA), p-coumaric (p-CoumA), ferulic (FA) and 102 

cinnamic acid (CIN)) was achieved by using (2 × 5 mL) 80% methanol (Mesarović et al., 103 

2017a). After homogenization in the ultrasound bath (30 min at 25 ºC) for all analyses, the 104 

extracts were centrifuged, filtered (0.45 µm nylon syringe filter) and directly injected into the 105 

Dionex UltiMate 3000 HPLC system (Thermo Scientific, Germany). For carotenoids only, 106 

prior to injection, the extracts were evaporated to the dryness under a stream of nitrogen and 107 

redissolved in the mobile phase. The same analytical column (Acclaim Polar Advantage II, 108 

C18 (150 × 4.6 mm, 3 µm) was used for the chromatographic separation of the tested 109 

phytochemicals. The mixture of acetonitrile and methanol (1:1, v/v) at isocratic program, 1 110 

mL/min, was used as the mobile phase for the separation of tocopherols, while the mixture of 111 

methanol and acetonitrile, (90:10, v/v) at isocratic program, 1 mL/min, was employed for the 112 

separation of carotenoids. The detection of tocopherols and carotenoids was conducted by 113 

fluorescence (λex 290 nm; λem 325 nm) and photodiode array (at 450 nm and 470 nm) detector, 114 

respectively. The mobile phase used for the separation of free phenolic acids and the 115 

wavelengths for detection were the same as reported by Mesarović et al., (2017a). The 116 

concentrations of the analyzed phytochemicals are expressed as µg per g of dry weight (DW) 117 

and reported as the mean value of three independent injections. The obtained value for DW 118 

was achieved by drying the fresh kernel (4 g) to constant weight in the ventilation dryer (105 119 

ºC, 4h).  120 

2.3. Data analysis 121 
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Two-factorial analysis of variance (ANOVA) for the randomized complete block 122 

design (RCBD) was conducted for the obtained results by using the M-STAT-C software 123 

(Michigan State University, 1989). For the determination of differences between hybrids (H), 124 

treatments (T) and the hybrid × treatment interaction  (H × T), Fisher’s least significant 125 

difference (LSD) test at 0.95 confidence level (p ≤ 0.05) was employed. In order to interpret 126 

the data more easily, the obtained concentrations of the analyzed phytochemicals after all 127 

applied treatments were changed to percent difference from the control. Furthermore, the 128 

Principal Component Analysis (PCA) by using PLS Toolbox software package (v.6.2.1) 129 

within MATLAB (R2011a) was conducted. The tested data were mean-centered and auto-130 

scaled and the singular value decomposition (SVD) algorithm was employed (95% confidence 131 

level) for Hotelling T2 limits.  132 

3. Results  133 

The tested hybrids, treatments and H × T interaction expressed significant impact on 134 

the concentration of analyzed phytochemicals (Table 1). The highest variability (3.66 %) 135 

between the tested factors was observed for δ-T content, while the lowest (0.91 %) was 136 

observed for FA content. The concentrations (µg/g DW) of all analysed phytochemicals after 137 

the applied treatments are given in Tables S1-S3 (Supplementary material). 138 

Table 1. ANOVA and LSD value for the effect of hybrids, treatments and their interaction on 139 

the analyzed phytochemicals. 140 

Mean squares LSD0.05  

 
H T H × T CV (%) H T H × T 

L+Z 924.093**  32.17**  54.913**  3.62 0.76 0.98 1.70 
β-carotene 3.176**  0.858**  0.431**  3.37 0.04 0.06 0.10 
δ-T 0.069**  0.043**  0.193**  3.66 0.03 0.06 0.07 
β+γ-T 60.664**  44.366**  50.54**  0.96 0.09 0.12 0.20 
α-T 1.555**  0.504**  1.822**  2.05 0.04 0.06 0.10 
PA 22.434**  227.37**  45.836**  2.70 0.91 1.18 2.04 
CA 1.434**  0.36**  0.107** 0.95 0.00 0.01 0.00 

p-coumA 132.291**  8.39**  29.564**  1.03 0.13 0.17 0.30 
FA 34.65**  10.015**  7.663**  0.91 0.17 0.22 0.38 
CIN 67.124**  2.691**  6.477**  1.42 0.06 0.08 0.14 

** significant at 0.01 probability level; df- degrees of freedom; CV ‒ coefficient  of variation; LSD ‒ Fisher’s 141 

least significant difference test at 0.95 confidence level 142 

3.1. Carotenoids  143 
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The obtained results revealed that all applied treatments significantly increased the 144 

concentration of lutein and zeaxanthin in all hybrids with the exceptions of mesotrione and 145 

nicosulfuron treatments for ZP355su and ZP553su, respectively, with regard to (w.r.t.) the 146 

control (Table 2). The combination of FF and mesotrione significantly increased the L+Z 147 

amount in ZP504su and ZP355su, as opposed to the nicosulfuron + FF treatment (Table S1). 148 

The content of β-carotene after all applied treatments was significantly higher compared to the 149 

control, except for ZP553su in the treatments with nicosulfuron and nicosulfuron + FF (Table 150 

2). FF in combination with mesotrione and nicosulfuron had a greater impact on the increase 151 

of β-carotene in ZP504su and ZP553su (Table S1). 152 

Table 2. Percent increase in the concentration of carotenoids in the sweet maize kernel 153 

after the applied treatments. 154 

 
% increase 

 
ZP504su ZP355su ZP553su 

Treatment L+Z β-carotene L+Z β-carotene L+Z β-carotene 
Control 0e 0hi 0h 0n 0f 0gh 
Mesotrione 37.36b 155.66b -40.99i 69.00jk 25.86e 41.71e 
Nicosulfuron 19.73c 33.69f 81.15f 126.32g -17.34g -35.74lm 
Mesotrione+FF 52.80a 207.30a -3.12h 31.50m 32.28e 67.20d 
Nicosulfuron+FF 11.29d 103.29c 40.37g 87.13ij 3.53f -30.01kl 

The percentages followed by a different letter are significantly different based on Fisher’s least 155 

significant difference test at α = 0.05 level. 156 

3.2. Tocopherols  157 

All applied treatments significantly increased the amount of δ-tocopherol with the 158 

exception of mesotrione and mesotrione + FF treatments in ZP355su and nicosulfuron and 159 

nicosulfuron + FF treatments in ZP553su (Table 3). Significantly higher concentration of β+γ-160 

tocopherols was noticed in ZP553su after all applied treatments compared to the control. The 161 

variability in β+γ-tocopherols was also observed for the other two hybrids after the applied 162 

treatments compared to the control. In ZP553su α-tocopherol content significantly decreased 163 

after all applied treatments compared to the control. The variability in α-tocopherol content 164 

was found in ZP504su and ZP355su after the applied treatments compared to the control. The 165 

combination of mesotrione + FF and nicosulfuron  + FF significantly increased the content of 166 

δ- and β+γ-tocopherols in all hybrids, with the exception of nicosulfuron + FF treatment in 167 

ZP553su (Table S2). Furthermore, it was found in ZP355su and ZP553su that FF in 168 
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combination with mesotrione significantly reduced the α-tocopherol content, as opposed to FF 169 

in combination with nicosulfuron.    170 
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Table 3. Percent increase in the concentration of tocopherols in the sweet maize kernel 171 

after the applied treatments. 172 

 
% increase 

 
ZP504su ZP355su ZP553su 

Treatment δ-T β+γ-T α-T δ-T β+γ-T α-T δ-T β+γ-T α-T 
Control 0g 0g 0gh 0d 0i 0f 0d 0k 0b 
Mesotrione 131.80c 38.77e 57.96r -28.06e  -35.85l -2.50f 3.09d 20.76h -5.41c 
Nicosulfuron 19.76fg -18.11j -32.29j 27.11b 26.76f 38.32c -27.26e 274.12a -61.66i 
Mesotrione+FF 165.89b 71.01c 77.16d -34.79ef -0.46i -25.87g 42.84b 43.37f -16.74d 
Nicosulfuron+FF 47.83e -4.47h -32.93j 67.38a 77.20d 71.02a -42.55g 195.65b -52.83h 

The percentages followed by a different letter are significantly different based on Fisher’s least 173 

significant difference test at α = 0.05 level. δ-T = δ-Tocopherol;  β+γ-T = β+γ-Tocopherol; α-T = α-Tocopherol. 174 

3.3. Free phenolic acids 175 

Significantly higher concentration of free protocatechuic acid was found after all 176 

applied treatments compared to the control, with the exception of the treatments with 177 

nicosulfuron in ZP504su and ZP553su and nicosulfuron + FF in ZP553su (Table 4). 178 

Furthermore, the applied treatments significantly increased the free caffeic acid content with 179 

the exception of the mesotrione treatment in ZP355su and ZP553su, the nicosulfuron 180 

treatment in ZP504su and nicosulfuron + FF for ZP553su compared to the control. All applied 181 

treatments also increased the amount of free p-coumaric acid in ZP504su and ZP355su, with 182 

the exception of the nicosulfuron + FF treatment in ZP504su compared to the control. The 183 

significant accumulation of free ferulic acid in ZP355su and ZP553su was obtained after the 184 

applied treatments compared to the control, whereas the content of free ferulic acid in 185 

ZP504su was significantly lower compared to the control. The high variability in the 186 

concentration of free cinnamic acid was observed in all hybrids compared to the control after 187 

all applied treatments. It was noticed that the mesotrione + FF treatment and the nicosulfuron 188 

+ FF treatment raised the concentration of free caffeic and cinnamic acid in ZP504su and 189 

ZP355su and free protocatechuic acid in ZP553su and free p-coumaric acid in ZP355su 190 

(Table S3). 191 
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Table 4. Percent increase in the concentration of free phenolic acids in the sweet maize kernel after the applied treatments. 192 

 % increase 

 
ZP504su ZP355su ZP553su 

Treatment PA CA p-CoumA FA CIN PA CA p-CoumA FA CIN PA CA p-CoumA FA CIN 

Control 0d 0n 0jk 0f 0m 0fg 0j 0k 0jk 0e 0gh 0d 0a 0ij 0g 

Mesotrione -0.38d 86.79l 14.94gh -8.44i 68.24k 36.61c -2.56k 15.07h 30.19c -4.75f 57.66b -0.72e -50.97g -2.53k -33.32j 

Nicosulfuron -17.74f -26.67o 7.37i -0.43f -72.50o 12.25e 6.16i 3.36j 37.54b 28.22c -10.87i 14.06c -17.32b 10.36f -6.24h 

Mesotrione+FF 14.68b 163.59g 21.33f 10.36d 130.99i 37.08c 57.76a 60.02c 22.88e 72.35a 75.65a 14.56b -46.58e 7.98gh -55.63l 
Nicosulfuron+FF 2.39d 46.05m -6.93l -1.58fg -34.41n -8.66h 19.18f 38.40d 51.15a 54.69b 20.43e -6.13h -17.20b 6.05h 13.33d 

The percentages followed by a different letter are significantly different based on Fisher’s least significant difference test at α = 0.05 level. PA = protocatechuic acid; 193 

CA = caffeic acid; p-CoumA = p-coumaric acid; FA = ferulic acid; CIN = cinnamic acid. 194 
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3.4. PCA 195 

In order to evaluate the connection between hybrids, applied treatments and analyzed 196 

phytochemicals, the PCA was applied and it resulted in the four-component model (85.32% of 197 

the overall data variance). PC1 and PC2 components explained 33.14% and 25.07% of the 198 

total data variance, respectively, and their mutual projections (factor scores and loadings) are 199 

shown in Figure 1a and Figure 1b. Interestingly, the PCA score (Figure 1a) revealed that the 200 

applied nicosulfuron and nicosulfuron + FF treatments influenced the concentration of δ- and 201 

α-tocopherol and free ferulic, caffeic, and cinnamic acid only in ZP355su. Similarly, the 202 

mesotrione and mesotrione + FF treatments influenced only the content of free protocatechuic 203 

acid, β-carotene, lutein and zeaxanthin in ZP504su and ZP553su. The variability of β+γ-204 

tocopherol and p-coumaric acid was observed for the nicosulfuron and nicosulfuron + FF 205 

treatments in ZP553su and the mesotrione and mesotrione + FF treatments in ZP355su.  206 

 207 

Figure 1. The obtained PCA score (a) and loading plot (b) for PC1 and PC2 components. 208 

4. Discussion 209 

The obtained concentration of carotenoids and tocopherols in the tested sweet maize 210 

hybrids was in agreement with Ibrahim and Juvik, (2009). However, the content of free 211 

phenolic acids obtained in our study was lower in comparison with the results obtained by 212 

Das and Singh, (2016). All applied treatments expressed significant variation in the 213 

concentration of phytochemicals in the tested hybrids. In line with our results, Kopsell et al., 214 
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(2009) reported a significant increase in the content of carotenoids in a moderately sensitive 215 

sweet maize genotype. An increasing trend in the content of carotenoids after applying certain 216 

herbicides was also reported by Cutulle et al., (2018). The significant increase in the content 217 

of carotenoids in the sweet maize kernel could probably be explained by the formation of a 218 

large carotenoid pool as a result of mesotrione application (Kopsell et al., 2009). Mesotrione 219 

inhibits the HPPD enzyme and decreases the concentration of plastoquinone, which is a 220 

cofactor for phytoene desaturase (PDS). PDS is an important enzyme in carotenoid 221 

biosynthesis and its indirect inhibition could increase the concentrations of phytoene (Fritze et 222 

al., 2004). The accumulation of phytoene may continue for as long as the plant metabolizes 223 

mesotrione, after which the HPPD enzyme is reactivated. When the biosynthesis of 224 

plastoquinone starts again, PDS catalyzes the reaction and moves the substrate (a large pool of 225 

phytoene) into the carotenoid biosynthetic pathway, which further results into a higher 226 

concentration of carotenoids (Kopsell et al., 2009). McCurdy et al., (2008) reported that 227 

mesotrione suppressed PDS in leaf tissues, so it is possible that the same mechanism could 228 

take place in the kernel. It is possible that a similar mechanism could explain the tocopherol 229 

enrichment in the kernel after mesotrione application. The first reaction in the tocopherol 230 

biosynthesis starts with the conversion of p-hydroxyphenylpyruvic acid into homogentisic 231 

acid (HGA) by HPPD enzyme catalyzation (DellaPenna, 2005). HGA is then further 232 

subjected to various biochemical reactions and converted into all four forms of tocopherols. 233 

Due to HPPD inhibition after mesotrione application, as a consequence, a large pool of p-234 

hydroxyphenylpyruvic acid could be formed. When mesotrione is metabolized in the plant 235 

and HPPD enzyme is reactivated, a high concentration of accumulated p-236 

hydroxyphenylpyruvic acid moves as a substrate into the biochemical pathway, which results 237 

in a higher concentration of tocopherols. The variability in the concentration of tocopherols 238 

after mesotrione and nicosulfuron application obtained in our study was also reported by 239 

Mesarović et al., (2017b).  240 

To the best of our knowledge, this is the first reported data on the influence of 241 

mesotrione and nicosulfuron, with and without FF, on the concentration of free phenolic acids 242 

in the sweet maize kernel. A trend in the accumulation of p-coumaric, cinnamic and ferulic 243 

acid after ALS inhibiting herbicides was reported by Orcaray et al., 2011, which is in line 244 

with our results. Furthermore, the variability in total phenolic compounds in the maize 245 

seedling after the application of herbicides belonging to different groups was observed 246 
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(Nemat Alla et al., 1995). Herbicides can modulate the secondary plant metabolites by 247 

affecting the shikimate pathway (Daniel et al., 1999; Orcaray et al., 2011). Nemat Alla et al., 248 

(1995) reported an increasing trend in the total hydroxyphenolic compounds and 249 

phenylalanine ammonia-lyase (PAL) activity after herbicide application. PAL catalyzes the 250 

reaction of the conversion of phenylalanine (one of the three final products of the shikimate 251 

pathway) into cinnamic acid, which is the common precursor for the synthesis of other 252 

phenolic derivatives. Furthermore, the conversion of cinnamic acid to coumaric acid is 253 

catalyzed by P450 monooxygenase (Daniel et al., 1999). The same enzyme is involved in 254 

phase I of herbicide metabolism, in which herbicide molecules are converted into less 255 

phytotoxic substances through chemical modification (De Carvalho et al., 2009). 256 

Furthermore, PAL can convert tyrosine directly into p-coumaric acid in grass, (Rösler et al., 257 

1997). The observed changes in the PAL activity point out the diversity of herbicide effects, 258 

which results in huge variations in the secondary metabolites content. Some herbicides can 259 

reduce plant carbon fixation through photosynthesis, which can cause a reduced flow through 260 

the shikimate pathway and reduce the synthesis of phenols. Other herbicides can reduce the 261 

content of phenols by blocking the synthesis of aromatic amino acids (Daniel et al., 1999). 262 

The same authors reported that herbicides can both decrease and increase the total phenolic 263 

content in plants, which is in agreement with our study.  264 

Another explanation for the higher content of antioxidants in the kernel is abiotic 265 

stress induced by herbicide application (Nemat Alla and Hassan, 2006). When the stress 266 

occurs, the plant responds with various biochemical reactions and de novo synthesis of both 267 

enzymatic and non-enzymatic antioxidants, such as carotenoids and tocopherols (Demidchik, 268 

2015). Similarly, Kopsell et al., (2009) suggest that, after the diminution of metabolism 269 

induced by mesotrione and atrazine stress, plants respond by accumulating higher 270 

concentrations of carotenoids. Dragičević et al., (2010) reported the variability in the content 271 

of total phenolic compounds in maize shoots after herbicide application. A higher 272 

concentration of total phenolic compounds was found in maize leaves in the treatment with 273 

herbicides compared to the herbicide + FF treatment, which indicates that foliar fertilizer 274 

reduces herbicide stress (Brankov et al., 2017). Silva Messias et al., (2013) found that applied 275 

foliar fertilizer induced the improvement of secondary metabolites such as bound phenolic 276 

compounds and carotenoids, while our study showed a different trend in the content of 277 

phytochemicals in the treatments with foliar fertilizer. If foliar fertilizers improve the nutrient 278 
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content (phytochemicals) in the crop, why do we observe a significant increase in carotenoids, 279 

tocopherols and free phenolic acids in treatments with mesotrione and nicosulfuron without 280 

foliar fertilizer (Table 2-4)? Perhaps such results indicate an incompatibility of the applied 281 

herbicides with the foliar fertilizer. Furthermore, it is known that nicosulfuron inhibits the 282 

biosynthesis of the essential branched-chain amino acids, but in what biochemical pathways 283 

does it affect carotenoids and tocopherols (Table 2-3)? The markedly different trend in the 284 

content of phytochemicals obtained in this study might indicate the variability in their 285 

susceptibility to herbicides and also the dependence on the genotype. The obtained variations 286 

in the content of phytochemicals indicate there is an alteration in the plant biochemical 287 

pathway in the presence of herbicides and foliar fertilizer and emphasize the complexity of 288 

the metabolic pathway that occurs (Cutulle et al., 2018). The performed PCA revealed that the 289 

variation in the content of phytochemicals depended both on the genotype and the applied 290 

treatments. Ibrahim and Juvik, (2009) reported differences in carotenoid and tocopherol 291 

contents between the sweet maize genotypes, indicating an allelic variation within gene loci 292 

regulating biosynthesis of these compounds. 293 

4. Conclusion 294 

HPPD and ALS inhibiting herbicides, with and without foliar fertilizer, modified the 295 

concentration of analyzed phytochemicals (i.e. carotenoids, tocopherols and free phenolic 296 

acids) in the sweet maize hybrids. Although the changes in the content of phytochemicals 297 

were different, the increasing trend occurs, at different rates, in the concentration of lutein, 298 

zeaxanthin, β-carotene, δ-tocopherol and free p-coumaric acid in ZP504su; of β-carotene, free 299 

p-coumaric and ferulic acid in ZP355su, and β + γ-tocopherol in ZP553su after the applied 300 

treatments when compared to the control. Significant decreases in the amount α-tocopherol 301 

and free cinnamic acid were observed in ZP553su after all treatments in comparison to the 302 

control. The PCA revealed that the content of phytochemicals was influenced by both the 303 

applied treatments and the sweet maize genotype. The variability in the alteration of 304 

phytochemical concentration which was observed in this study depended on both the applied 305 

treatment and the genotypes, which emphasizes the complexity of the biochemical pathways 306 

of plants and physiological mechanisms. The high variability and seemingly unfathomable 307 

plant processes after herbicide application with and without foliar fertilizer point out the need 308 

for further comprehensive studies in transcriptomics and metabolomics. Further research 309 

could include additional field experiments which would study the influence of some other 310 
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combinations of herbicides, foliar fertilizers and safeners. The results obtained in this study 311 

highlight the potential of herbicide application, which is widely used in the agronomic 312 

practice, as a tool for  improving the nutritive quality of the sweet maize and not only for 313 

weed control.  314 
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• First report of herbicides impact on free phenolic acids content in sweet maize kernel. 

• Assessment of the effects of herbicides plus foliar fertilizer on eleven phytochemicals.  

• Improved free ferulic acid and α- tocopherol content was noticed. 

• Applied treatments gave sweet maize higher value in terms of functional foods. 

 


