
 

 ___________________________  

Corresponding authors: Dragan Boţović, University of Belgrade, Faculty of Agriculture, 

Nemanjina 6, Zemun–Belgrade, Serbia; and Vera Popović, Institute of Field and Vegetable 

Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia, E-mail: bravera@eunet.rs; 

stragrospancevo@gmail.com 

 

 

 

 

 

 

 

UDC 575.633.15 

             https://doi.org/10.2298/GENSR1803755B 
                            Original scientific paper 

 

 

 

ASSESSMENT STABILITY OF MAIZE LINES YIELD BY GGE-BIPLOT ANALYSIS 

 

Dragan BOŢOVIĆ
1*
, Tomislav ŢIVANOVIĆ

1*
, Vera POPOVIĆ

2*
, Mladen TATIĆ

2
,  

Zagorka GOSPAVIĆ
3
, Zoran MILORADOVIĆ

4
, Goran STANKOVIĆ

5
, Milorad ĐOKIĆ

4 

 

1
University of Belgrade, Faculty of Agriculture, Zemun–Belgrade, Serbia; 

2
Institute of Field and Vegetable Crops, Novi Sad, Serbia; 

3
University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia; 

4
University of Educons, Faculty of Ecological Agriculture, Sr. Kamenica, Serbia. 

5
Maize Research Institute Zemun Polje, Belgrade, Serbia 

 

 

Boţović D., T. Ţivanović, V. Popović, M. Tatić, Z. Gospavić, Z. Miloradović, G. 

Stanković, M. Đokić (2018): Assessment stability of maize lines yield by GGE-biplot 

analysis.- Genetika, Vol 50, No.3, 755-770. 

Maize genotypes have varied reactions in different localities, years, treatments or the 

combination of these factors, due to genotype x year interaction. The objective of this 

study was to estimate genotype by locality, by year, by treatments (G×L×Y×T) 

interaction using AMMI model, to identify maize genotypes with stable and high yield 

performance in different growing seasons. The trials with seven maize lines/genotypes 

were conducted during two years (2010–2011) at the four treatments and two locations: 

Panĉevo and Zemun Polje. The results showed that the influence of: genotype (G), 

locality (L), treatment (T) and G×L, G×T, Y×L, Y×T, L×T, G×Y×T, G×L×T, Y×L×T, 

G×Y×L×T interaction, on maize yield were significant (p<0.01). The share of genotype 

for maize grain yield in the total phenotypic variance was 21.16%, the aggregate share 

of the years and the locality was 6.10%, the treatment was 18.22%, and the total 

interaction was 54.52%. The AMMI analysis of the main components of IPCA1 and 

IPCA2 for the interaction of G×L and G×T shows that the first major component, 

IPCA1, comprises 100% of the sum of the squared interaction G×L and showed a 

statistically significant effect. The results also show that the sums of the squares of the 

first and second major components (PC1 and PC2) constitute 100% of the sum of the 

squared interaction G×L. The IPCA1 share in the G×T interaction was 47.39% and the 

IPC2 was 37.94%. IPC1 and IPC2 for this interaction was 85.33%. A high level of IPC2 
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indicates a significant treatment effect. The results of AMI analysis show that there is a 

significant difference between the genotype reactions to different ecological conditions 

for investigated factors. It also provided better insight in specific association between 

maize grain yield, locality, treatment and meteorological variables. Among the tested 

maize lines/genotypes, L-5, L-4 and L-6 could be separated as highest yielding 

genotypes, however L-5 could be recommended for further breeding program and in 

large-scale seed production due to its stable and high yielding performance.  

Key worlds: Zea mays L., lines, AMMI analysis, G×Y×L×T interaction, yield 

 

INTRODUCTION 

Maize (Zea mays L.) is one of the biggest profits in 20
th

-century agriculture. Strategically, 

it is important agricultural species that occupies the third place in the world's widespread 

distribution (143 mil. ha), after wheat (215 mil. ha) and rice (151 mil. ha) and in Serbia it is at 

first place. In the last few years’ average, areas under maize in Serbia were about 1.2 million 

hectares and they were recorded oscillations. Hybrid is just one of the many, but also the most 

important factor of production, whose effect, fortunately, can be controlled. For successful 

production it is necessary to select several hybrids, most suitable for a certain agro-ecological 

area (POPOVIĆ, 2010; 2015). Average maize yield in the world is 5.6 t ha
-1 

(ŢIVANOVIĆ and 

POPOVIĆ, 2016; ZRAKIĆ et al., 2017; MAKSIMOVIĆ et al., 2018). The world's total production of 

maize is about 1,000 million tones. The world's largest producers of maize are USA, China and 

Brazil with a total of two-thirds of world production. According to the harvested areas, Serbia is 

the fourth in Europe (POPOVIĆ, 2010). 

There are many definitions of stability and adaptability but the following ones prevail. 

Stability is the ability of a genotype to have always the uniform yield regardless of 

environmental effects (HILL et al., 1998 Citate: BECKER, 1981). Adaptability is the ability of aa 

variety to provide stable and high yield under different environmental conditions (HILL et al., 

1998 Citate: FINLY and WILKINSON, 1963). 

Maize breeding programs depend on the understanding and knowledge of genetic 

diversity and relationship among inbred lines and breeding material. This is crucial in terms of 

the yield, as the major objective in all breeding programs as well as in all other targeted traits 

(MLADENOVIĆ DRINIĆ et al., 2004; MILIVOJEVIĆ et al., 2017). Stability and adaptability of 

genotypes are best assessed by evaluating the cultivars in different environments and ecological 

regions. Changes in environments affect both crop growth and grain yield due to significant 

genotype × environment interactions (GEI) (POPOVIĆ et al., 2012; 2016). Results of multi-

environment trials (MET) have demonstrated the existence of GEI (BADU-APRAKU et al., 2011; 

2013; STOJAKOVIĆ et al., 2015; PRŢULJ et al., 2015). The presence of a significant GEI 

complicates the selection of superior cultivars and the best testing sites for identifying superior 

and stable genotypes. This necessitates extensive testing of cultivars in multiple environments 

over several years before cultivars are recommended for release. Grain yield being a complex 

trait routinely exhibit GEI, thus requires genotype evaluation in MET in the advanced stages of 

selection (FAN et al., 2007). Analysis of MET data revealed that some cultivars are well adapted 

to specific ecological regions (YAN, 2010). Therefore, selection of suitable genotypes and testing 

sites is crucial to the success of a plant breeding program.  
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Climate change can alter the arable farming with reducing yields in maize belts, at the 

same time (LEE and TOLLENAAR, 2007; POPOVIC, 2010). For a more successful breeding work 

knowledge of the value of the interaction of the genotype and the external environment is of 

great importance. Choosing of superior maize hybrids for production is difficult, due to the 

presence of genotype interaction and environmental factors (GEI). The stability and adaptability 

of the genotype under different conditions is due to its genetic structure, but it is known a little 

about the components that determine stability more closely and a relationship between them, as 

well as the effect of breeding system on them (LEE and TOLLENAAR, 2007). By using statistical 

methods, it is possible to exclude the consequences of interaction of genotype and external 

environment and to isolate stable and high yield genotypes. Such a method of selecting maize 

hybrids in literature is known as a dynamic concept of stability and accepted in maize breeding 

programs. The most commonly used statistical analysis for the interpretation of GEI is based on 

the use of biplots of the AMMI model. This model is distinguished because it interprets the 

effects of genotype (G) and the location (E) as additive, and on the GEI, as a multiplicative non-

adaptive component, an analysis of the main components is applied (DUARTE and VENCOVSKY, 

1999). With this analysis, one or more statistically significant components (PCA axes) are 

generated from the sum of the squares. A biplot graph is used for interpreting the results, and it 

combines the mean values of the genotype properties and some of the main components of the 

interaction. 

Several stability statistics used to partition GEI include regression analysis, multivariate 

analysis, cluster analysis, genotype main effect plus genotype × environment (GGE) biplot (YAN, 

2001) and additive main effect and multiplicative interaction (AMMI). However, both GGE and 

AMMI analyses are the most frequently used in analyzing GEI pattern of multi-environment data 

set. AMMI analysis is capable of detecting GEI in a multi-dimensional space and presents the 

interaction visually using a biplot. AMMI has been used to analyze GEI in wheat (CHANG and 

CHAI, 2006), barley (MIROSAVLJEVIC et al., 2015), sugar beet (ĆIRIĆ et al., 2017) and maize 

(BADU-APRAKU et al., 2011; 2013; STOJAKOVIĆ et al., 2015; OYEKUNLE et al., 2017). Therefore, 

understanding the GEI between intermediate maturing maize genotypes and testing locality for 

evaluating regional trials in Serbia is very important for evaluating the stability and suitability of 

the genotypes and environments.  

The aim of this research is to determine the influence of genotype, year, locality and 

treatment (sulfonylurea) on the stability of yield of tested maize lines and to identify superior and 

stable genotypes across environments and assess relationships among test environments. This 

work should be useful for maize selectors to understand the interaction of the genotype × 

environment, as well as the agricultural producers in selecting maize hybrids.  

 

MATERIALS AND METHODS 

The research was carried out at two sites: in Zemun Polje (in the Maize Research 

Institute) and in Panĉevo (in the Institute Tamiš), in two variant with treatments, during 2010 and 

2011, the basic plant material consists of six maize lines (L-1, L-2, L-3, L-4, L-5 and L-6). 

Examines were based on a completely random block system, in three reps, with 20 plants in each 

repetition. Each genotype was planted in one row with ten houses with two plants each, so that 

the size of the elementary plot was 2.8 m
2
 (0.7m x 0.4m). The density of crops was 74,280 plants 
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per hectare. Sowing and harvesting were done manually and, in the experiment, standard maize 

cultivation technology was applied except for variants with treatment. The experiments were 

four sub-treatments with Sulfonylurea herbicides: 1. T1 - Control was without herbicide, 

treatment was done only with water - treatment 1; 2. T2 - active substance Nicosulfuron, and the 

Motivell preparation in the amount of 1.25 l ha
-1

  (6.3 ml per treatment) - treatment 2; 3. T3 - 

active substance Rimsulfuron, and the Tarot preparation in the amount of 60 g ha
-1

  (0.3 g per 

treatment) - treatment 3; 4. T4 - active substance Forasulfuron, and the Ekvip preparation in the 

amount of 2.5 l ha
-1

 (12.6 mL per treatment) - treatment 4. Herbicides were applied when corn 

was in the phase of 9-10 developed leaves (15-16 per BBCH scale) with a Solo spiral type with 

Tee Jet KSR11003, with a water consumption of 250 l ha
-1

. At the time of the technological 

maturity, at both localities, from each tested genotype, 10 plants from three reps were taken in 

order to obtain data on the following grain yield. Biometric data processing is based on repetition 

for grain yield. 

 

Data analysis 

The AMMI model (The Additive Main Effects and Multiplicative Interaction) was used 

to assess the G×E interaction, and it can be represented by the following formula (GAUCH et al., 

2008):  

 
Yger= μ+αg+βe+Σnλnγgnδen+ρge+εger 
 
Where: Yger is the yield for the genotype g in the environment e the replication r. The 

additive parameters are: m – the grand mean, αg – a/the genotypic mean deviation from the grand 

mean, βe – the environmental mean deviation. The multiplicative parameters are: λn– a singular 

value for n interaction principal component axis n, γgn – the genotypic eigenvector for IPCA axis 

n, δen – the eigenvector of the environment for IPCA axis n, ρge – a residue when not all PCA 

axis are included and eger - the error. Statistical data analysis was performed using the GenStat 

12th computer statistical program (GenStat for Windows 12
th

 Edition, VSN International, Hemel 

Hempstead). AMMI analyses were performed in Excel Biplot Macros. Among multivariate 

analysis models, the additive main effects and multiplicative interaction (AMMI) biplot and the 

genotype main effect and genotype × environment interaction (GGE) biplot have been frequently 

used to visualize G×E interaction. The main differences of the two methods, AMMI analysis is 

referred to double-centered principal component analysis (PCA), whereas GGE biplot analysis is 

based on environment-centered PCA (RAO et al., 2011). The AMMI model incorporates analysis 

of variance (ANOVA) and PCA in a single statistical model (GAUCH et al., 2008). In AMMI 

models, using ANOVA additive effect is separated from interaction, and then PCA is applied to 

analyze interaction effect (KAYA et al., 2002). The biplot graphic presentation shows both main 

and interaction effects for genotypes and environments simultaneously and provides a more in-

depth analysis of G×E interaction (ZOBEL et al., 1988). Authors state that it is high-value 

genotypes of the PC1 component are distinguished above the average expression of the tested 

trait. In contrast, the second interaction component (PC2) indicates genotype stability. Zero value 

shows highest stability and when the value goes from zero, it shows instability. We have 

theoretically and practically observed four different combinations of these two components: the 
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first consists of over average and stable genotypes (high value PC1, low PC2 value), the second 

group of over average and unstable genotypes (high value PC1, high value of PC2), third sub 

average and stable (low PC1 value, low PC2 value), and fourth sub average and unstable 

genotypes (low PC1 value, high PC2 value). 

 

Meteorological data 

Meteorological data, especially precipitation and temperature, varied significantly trough 

the growing seasons (POPOVIĆ et al., 2015; 2016; ŢIVANOVIĆ et al., 2017). Monthly precipitation 

and average temperature were collected from the weather station located near the experimental 

fields, in Panĉevo and Zemun Polje, Serbia. Total amount of precipitation during crop growth 

cycle was 480 mm (2010) and 369 mm (2011) in Panĉevo and 497 mm (2010) and 328 mm 

(2011) in Zemun Polje, figure 1. Average monthly temperature was 18.4ºC (2010) and 19.5ºC 

(2011) in Panĉevo and 18.5ºC (2010) and 19.6ºC (2011) in Zemun Polje, fig. 1. 

 

  

a. b. 

Figure 1. Average temperature (ºC), a., and total precipitation (mm), b., 2010-2011 

 

Meteorological conditions are very variable in our country and significantly affect the 

yield (POPOVIĆ et al., 2012; 2015; 2016; JANKOVIĆ et al., 2018). 

 

 

 

RESULTS AND DISCUSSION 

Maize grain yield is one of the most important parameters for estimating maize hybrid 

value, in almost all programs of selection and breeding of standard grain quality. The analysis of 

variance (ANOVA) separates the overall variability on the main - additive effects of 

environment (E), genotype (G), and non-additive genotype × environment interaction (GE). 

In Table 1, the total sum of the squares was divided into the additive (genetic) and non-

additive (ecological) component by analyzing the variance for the mass of the grains yield of the 

tested maize inbred lines. A statistically significant influence of the genotype, location and 
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treatment, as well as all forms and levels of interactions for the grain yield (G×L, G×T, L×T, 

Y×L, G×Y×T, G×L×T, Y×L×T and G×Y×L×T) were recorded, Table 1. 

 

Table 1. Analysis of variance of AMMI model for grain yield (kg ha-1) 

 

Sources of variation DF Yield (kg ha-1)  

SS SS (%) MS 

Genotype (G) 5 15955 21.16 3190** 

Year (Y) 1 2065 2.72 2065 ns 

Location (L) 1 2564 3.38 2564** 

Treatment (T) 3 13775 18.22 4592** 

G×Y 5 3083 4.07 617 ns 

G×L 5 4725 6.25 945** 

IPCA1 5 4725 6.25 945** 

IPCA2 3 0,00 4.62 000 ns 

G×T 15 3492 4.62 233** 

IPCA1 7 1655 2.30 236 ns 

IPCA2 5 1325 1.60 265 ns 

Y×L 1 1224 1.62 1224** 

Y×T 3 4467 5.91 1489** 

L×T 3 1309 1.73 436** 

G×Y×L 5 4503 5.96 901 ns 

G×Y×T 15 3050 4.04 203** 

G×L×T 15 4221 5.59 281** 

Y×L×T 3 1051 1.39 350** 

G×Y×L×T 15 8748 11.58 583** 

Error 192 1328 1.76 6.92 ns 

Sum 287 75560 100.00 - 
*, ** - significant at the probability level 0.05 and 0.01 

 

The sum of squares of genotype was about eight times higher than the sum of squares of 

year and about six times higher than squares of the locality, Table 1. The share of sum of squares 

of genotype in the total variation is for 2.94% higher than the share of the sum of the squares of 

the treatment. The genotype share in the total phenotypic variance was 21.16%, the aggregate 

share of the years and the localities was 6.10%, the treatment was 18.22%, and the total 

interaction was 54.52%.  

There was a significant difference between the reaction of genotypes to different 

ecological conditions and on different treatments in experiment. Different reaction of inbred 

lines to environmental factors caused high sum of the squares of individual interactions and their 

significant effect on total phenotypic variability which is reflected by high interaction in the 

overall variation of grain yield. The large sum of squares of genotype and the high value of the 

share of treatment variance in the total phenotypic variability indicate a great divergence 

between the observed inbred lines and their reaction on applied treatments when it comes to this 
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trait. Considering the existence of a significant share of the interaction of the genotype with other 

sources of variation (localities and treatments), an AMMI analysis of its main components 

IPCA1 and IPCA2 for interaction G×L and G×T was done. The first major component, IPCA1, 

comprised 100% of the sum of the squares of the interaction G×L and showed a statistically 

significant effect. The results also show that the sums of the squares of the first and second major 

components (PC1 and PC2) constitute 100% of the sum of the squares of the interaction G×L. 

Also, the first PC1 axis has extremely high proportion in the total interaction, which points to the 

significance of the genotype in the overall variation and significance of the genotype for total 

interaction. The share of IPCA1 in terms of G×T interaction is 47.39%, and IPC2 makes 37.94%. 

IPC1 and IPC2 in this interaction together comprise 85.33% of the interaction. A high level of 

IPC2 refers shows high impact of treatment. 

BABIĆ et al. (2006) in their researches state that many authors showed the possibility of 

developing highly yielding and stable hybrids. The assumption was that commercial maize 

hybrids were characterized not only by the level of average yield bat also by their stability. The 

authors state that there are significant differences in yields and some yield components between 

genotypes, environments and interactions G×L, and that there was a significant share of the 

genotype and interaction G×L and G×Y in total phenotypic variation for yield and some of the 

components of the yield. In addition to the effect of the main factors, their interactions (G×Y, 

G×L, Y×L, G×Y×L) were high significant for all investigation trait (JOVOVIC et al., 2012).  

The IPCA values of interaction components for the grain yield of studied lines of maize 

are shown in Table 2. According to the IPCAg1 values in the interaction G×L, the lines L-3 and 

L-4 are characterized by a high level of stability while the other lines deviate significantly either 

positively or negatively. It should be noted that these lines also had a relatively high yield. The 

L-5 and L-6 lines has the highest average yield while far less stability have the inbred lines L-3 

and L-4. L-4, L-5 and L-6 lines had an average yield of over 4 tons, and could be considered 

desirable for further processing.  

 

Table 2. IPCA component of interaction and AMMI value of stability for maize grain yield  

 

Genotype Yield 

Average Genotype x Locality Genotype x Treatment 

IPCAg1 IPCAg2 IPCAg1 IPCAg2 

L-1 2910 -7.984 0.000 -10.752 6.965 

L-2 2764 -12.488 0.000 12.446 6.708 

L-3 3830 1.107 0.000 -8.993 -2.884 

L-4 4345 -1.471 0.000 3.182 1.636 

L-5 4665 9.033 0.000 2.875 -14.892 

L-6 4445 11.797 0.000 1.243 2.465 

 
When it comes to the first components of interaction G×T, the most stable is the L-6 

genotype both for IPCAg1 and IPCAg2, and the least stable is L-2 lines are based on IPCAg1 
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and L-5 based on IPCAg2. It should be noted that line L-2 is characterized by the lowest average 

grain yield and low stability, which is confirmed by IPCAg1 values.  

Herbicides from the group of Sulphonylureas caused stress in the line of maize, which is 

best reflected in the reduction in yield. Although they achieved the highest yields, the hybrids of 

the FAO group 600 were mostly affected by these climatic conditions. Forasulfuron is a 

herbicide from the group of sulfonylurea which caused stress to the greatest extent while 

Nicosulfuron was the most effective.  

Genotypes with a minimum variance, as well as the minimum value of the PC1 axis or 

when this value tends to be zero in different external environments, are considered stable 

(SABAGHNIAA et al., 2006). 

 

Stability of grain yield for maize lines 

The variability and stability of the grain yield of maize lines is shown in figure 2 using the 

GGE-biplot method (Figure 2a). The highest stability in terms of grain yield expression was 

exhibited by the genotype L-3, whose average value for the tested property almost coincides with 

the overall average for all the genotypes involved in the study. The L-5 and L-6 genotypes, 

which has the best expression, is also characterized by high stability. The lowest stability was 

demonstrated by L-6 and L-4 genotypes, but they are characterized by good expression of this 

trait in the investigated localities, while the genotypes L-2 and L-1 are not important for further 

selection in terms of the trait as they had the expression below average. 

 

  
a. b. 

Figure 2. GGE biplot demonstrates the stability of expression for the yield of lines based on the 

locality (a), and the treatment (b). 

 

The highest stability in terms of grain yield expression was revealed by the genotype L-5, 

followed by the genotypes L-4, L-6 and L-3 in different treatments (Figure 2b). The lowest 

stability was demonstrated by the genotypes L-2 and L-1, which again confirmed that these 

genotypes are not important for further selection for grain yield. It can be concluded that the 



D. BOZOVIC et al.: STABILITY OF MAIZE LINES YIELD                                                                                        763 

constant stability of grain yield expression was demonstrated by the genotype L-5, both in terms 

of the tested localities and the applied treatments. A similar conclusion can also be made for the 

genotype L-3, for which it can be said that it does not represents anything new in the selection, 

considering the yield level, achieved at the localities by different treatments.  

Figure 3a shows a graphic arrangement and a comparison of genotypes and locality 

according to the expression of grain yield, and in graph 3b, a comparison of genotypes and 

treatments was performed to express the same trait. The graphic representation is a complement 

to the previous graphs, that relate to stability, where genotypes that are farthest from the 

coordinative start are linked, so that a multi-legged geometric body is obtained, within which 

other genotypes are found. Genotypes which are at the corners of this body are genotypes with 

the best or the weakest expression of grain yield.  

With the with drawal of the axis from the coordinate start, which encloses the angle of 90 

degrees with the sides of the multi-legged geometric body or the imaginary extension of those 

sides, the biplot is divided into several sectors on the basis of which the tested genotypes are 

grouped. 

 

  
a. b. 

Figure 3.GGE-biplot view for line yields according to the "wich-won-where" model, based on 

the locality (a), and the treatment (b). 

 

The axis from the coordinate start divides biplots into five sectors (Figure 3a). Both 

localities belong to the same sector. The best expression and maximum stability in the first 

locality was achieved by the L-5 line. The L-4 line had somewhat lower expression and a lower 

level of stability at the first locality. As the value of the second locality is in the same sector, the 

expression of this feature in the L-6 line was more expressed in this locality, but with somewhat 

lower stability. The expression of grain yield at L-3 is matches with a general average, and the 

value of PC2 tends to be zero, and this line is stable, but it does not pose a challenge for the 

selectors. The other three genotypes did not show any significance in any of the observed 

localities. 
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Figure 3b shows that the coordinate system is divided into four sectors. All treatments are 

in the same sector. Based on the phenotypic expression for grain yields, the genotypes L-5, L-6 

and L-4 occupy the same sector on biplot. The mentioned genotypes showed the best values in 

the examined treatments, which, according to their average values, are also located in the same 

sector. Genotypes L-1, L-2, and L-3 did not show a good result in terms of applied treatments.  

On the Figure 4a, the formation of the coordinates of the average locality was made, 

which allowed the comparison of the tested genotypes with an ideal genotype. The position of 

the ideal genotype is represented by the smallest circle and arrow within it, and defined by the 

average values of PC1 and PC2 of the tested localities. It is a genotype that has achieved the best 

expression of the trait in all localities. The tested genotypes are compared to it and the ranking is 

carried out based on the distance indicated by the concentric circles. In this graph, we can see 

that the line L-5 tends to be an ideal genotype and that the L-4 and L-6 lines are somewhat 

distant. 

 

 
a. 

 
b. 

Figure 4. GGE biplot presentation for line yield according to the ideal genotype model, based on 

the locality (a) and the treatment (b). 

 

In the coordinate system, it appears that the sites of the locality almost match with the 

expression of this characteristic in line L-3, but the expression of grain yield at this line is far 

from ideal. The other lines are at the opposite end of an ideal genotype and are not of interest to 

the further process of breeding.  

At applied treatments, L-5 and L-6 are in the smallest circle, while L-4 is at the very edge 

of the circle, and these lines are closest to the ideal genotype, both in terms of stability and in 

terms of featured expression (Figure 4b). Similar to the tested localities, it appears that the 

coordinate system, the treatment sites almost corresponds to with the expression of this property 

in the L-3 line, but the grain yield expression at this line is far from ideal. The other lines are at 

the opposite end of the ideal genotype and are not interesting for breeding work.  
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Genotypes of interest in production are genotypes with high values of the PC1 component 

when it comes to the properties in which the plus variants, i.e. the higher the average value of the 

tested property and the lower the value of the PC2 component, i.e. close to zero. In the properties 

in which the minus variants are preferred in the selection process (for example, the height of the 

stem, etc.), genotypes with a lower PC1 value and a PC2 value tend to be zero, are desirable. 

Low-grade genotypes PC2 are characterized by broad adaptability, as opposed to specific 

adaptive genotypes that are located far from the coordinative start. Therefore, the high value of 

PC1 indicates that the best expression of the trait is in specific agro-ecological conditions. 

Based on the phenotypic grain yield expression, the hybrid H-4 had the highest 

expression and high level of stability, and the hybrid H-5 had the highest level of stability and 

high phenotypic expression in the conditions of different treatments. Based on this analysis, it 

can be concluded that maize hybrids achieve different yields of grains in different environments, 

and that the reorientation of the production area and the identification of genotypes with higher 

phenotypic stability can contribute to the improvement of the overall corn production. 

Technology which will achieve the yield level almost the same as its genetic potential should be 

used and in that way it would be easier to avoid expensive mistake in production process. 

BRANKOV's results (2016) are similar to our research. The author states that from the 

applied herbicides, sulfonylurea significantly influenced the changes in the content of 

biochemical parameters in the leaves of corn lines. The average world loss of corn yield, caused 

by weeds is around 10% (OERKE, 2006). According to SPASOJEVIC et al. (2014), without the 

application of herbicides, maize yield can be reduced by more than 50%. As the level of 

coagulation significantly influences yield, weed control is a basic component in almost every 

plant production system. Today, it is recommended that weed control, as well as other harmful 

organisms, be carried out with an integrated approach (IWM - Integrated Weed Management) 

(SIMIC et al., 2013). 

The GGE biplot figure for grain yield was more practical than AMMI1, and its 

interpretation provided a greater wealth of information. Our results are consistent with the results 

authors OLIVEIRA et al. (2010) where the authors they say it is the GGE biplot method performed 

better than AMMI1 in retaining a greater portion of the sums of squares (G + GE) and (GE), 

whereas the models AMMI1 and AMMI1.2 tend to be more accurate than model GGE2. 

However, the GGE biplot graph was more practical and its interpretation provided a greater 

wealth of information (OLIVEIRA et al., 2010). 

The results of AMI analysis show that there is a significant difference between the 

genotype reactions to different ecological conditions for investigated factors. The first PC1 axis 

had an extremely high proportion in overall interaction, which points to the significance of the 

genotype in overall variation and the significance of the genotype for overall interaction. 

BALESTRE et al. (2009) in this study is evaluated these genotypes at locations within the 

same state, unlike in this study, where very different sites in terms of soil and climatic features 

were used, resulting in a more complex pattern of GE interaction. Thus, when aiming to evaluate 

genotypes for regional programs (similar environments) the performance of the GGE biplot 

method is slightly superior. While on the contrary, in breeding programs on a nationwide seed 

scale, the performance of the AMMI method tends to be better. 
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CONCLUSION 

Results from this study have suggested that AMMI analysis is very applicable for the 

analysis of maize lines and different years, locality and treatment interaction. The share of 

genotype for maize grain yield in the total phenotypic variance was 21.16%, the aggregate share 

of the years and the locality was 6.10%, the treatment 18.22%, and 54.52% for the total 

interaction. The share of IPCA1 for maize grain yield in G×T interaction was 47.39%, while 

IPC2 was 37.94%. IPC1 and IPC2 for this interaction is 85.33%. A high level of IPC2 indicates a 

significant treatment effect. The share of sum of squares of genotype in the total variation is for 

2.94% higher than the share of the sum of the squares of the treatment. The genotype share in the 

total phenotypic variance was 21.16%, the aggregate share of the years and the localities was 

6.10%, the treatment was 18.22%, and the total interaction was 54.52%. The IPCA1 share in the 

G×T interaction was 47.39% and the IPC2 was 37.94%. IPC1 and IPC2 for this interaction was 

85.33%. A high level of IPC2 indicates a significant treatment effect. Among the tested maize 

lines/genotypes, L-5, L-4 and L-6 could be marked as highest yielding genotypes. Line L-5 could 

be recommended for further breeding program and large-scale production due to its stable and 

high yielding performance. It also provided better insight in the specific association between 

maize grain yield, locality, year and treatment. 
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Izvod 

Genotipovi kukuruza imaju drugaĉiju reakciju pri razliĉitim: lokalitetima, godinama, tretmanima 

ili njihovoj kombinaciji, usled prisustva interakcije genotipa i sredine. Cilj ove studije bio je da 

se proceni uticaj interakcije genotip x lokalitet x godina x tretman (G L   T) pomoću AMMI 

modela, kako bi se identifikovali genotipovi kukuruza sa stabilnim i visokim prinosima u 

razliĉitim vegetacionim sezonama. Ispitivanja sa sedam linija/genotipova kukuruza sprovedena 

su tokom dve godine (2010-2011), ĉetiritretmana i na dve lokacije: Panĉevo i Zemun Polje. 

Rezultati pokazuju da je uticaj: genotipa (G), lokaliteta (L), tretmana (T) i interakcije G × L, G × 

T, Y × L, Y × T, L × T, G × Y × T, G × L × T, Y × L × T, G × Y × L × T, na prinos kukuruza 

bio znaĉajan (p <0.01). AMMI analiza glavnih komponenti IPCA1 i IPCA2 za interakciju G L i 

G×T pokazuje da prva glavna komponenta, IPCA1, obuhvata 100% od sume kvadrata interakcije 

G×L i pokazala je statistiĉki znaĉajan uticaj. Rezultati pokazuju da sume kvadrata prve i druge 

glavne komponente (PC1 i PC2) ĉine 100% sume kvadrata interakcije G L. Udeo IPCA1 kada je 

u pitanju interakcija G×T iznosila je 47,39%, a IPC2 37,94%. IPC1 i IPC2 kod ove interakcije 

iznosila je 85,33%. Visok nivo IPC2 ukazuje na znaĉajan uticaj tretmana. Rezultati AMI analize 

pokazuju da postoji znaĉajna razlika izmeĊu reakcije genotipova na razliĉite ekološke uslove za 

ispitivane faktore. TakoĊe su omogućili, bolji uvid u specifiĉnu povezanost prinosa zrna 

kukuruza, lokaliteta, tretmana i meteoroloških varijabli. MeĊu testiranim linijama/genotipovima 

kukuruza, linije L-5, L-4 i L6 mogu se izdvojiti kao genotipovi sa najvecim prinosima, meĊutim 

linija L-5 se moţe preporuĉiti za dalje programe oplemenjivanja u proizvodnju velikih razmera 

zbog stabilnih i visokih prinosa.  
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